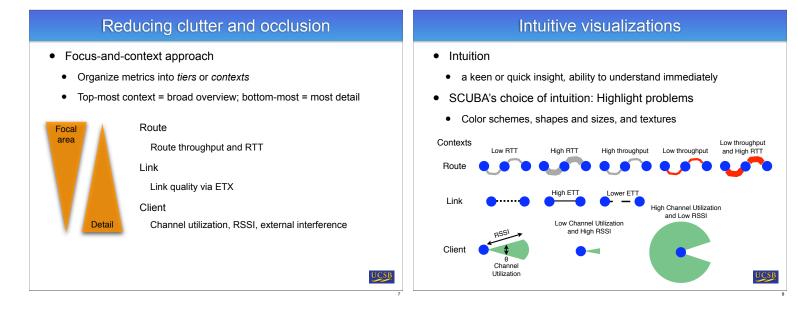

Scenario

- Large-scale metro-mesh wireless networks
 - Hundreds of repeaters, tens of gateways
 - Thousands of mobile and home users
 - Examples:
 - ~500 nodes in the Google WiFi
 - ~100 nodes in the Meraki SF Network
- Diagnosing performance is hard
 - Multitude of metrics
 - Graphs and plots are tedious
 - Time-consuming and exhausting

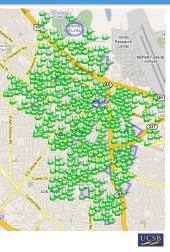
SCUBA

- What is SCUBA?
 - Visualization framework to diagnose mesh network performance


SCUBA

- What is SCUBA?
 - Visualization framework to diagnose mesh network performance
- Design goals
 - Reduced clutter and occlusion
 - Intuitive visualization
 - Interactive interface
 - Selectable modalities
- Impact
 - Fast and efficient diagnosis
 - Better diagnostic framework design

Outline


- Reduced clutter and occlusion
 - Focus and context approach via tiers of metrics
- Intuitive visualization
 - Choice of color schemes, sizes, shapes, and textures
- Interactive interface
 - Zooming and focussing
- Selectable modalities
- Planar and hyperbolic views
- Implementation on the UCSB MeshNet
- Future work

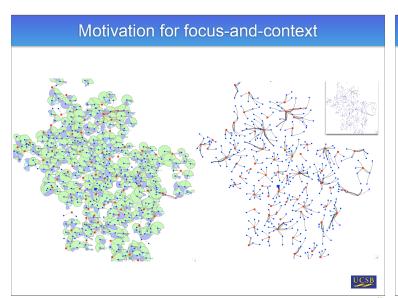
UCSB

Sample network

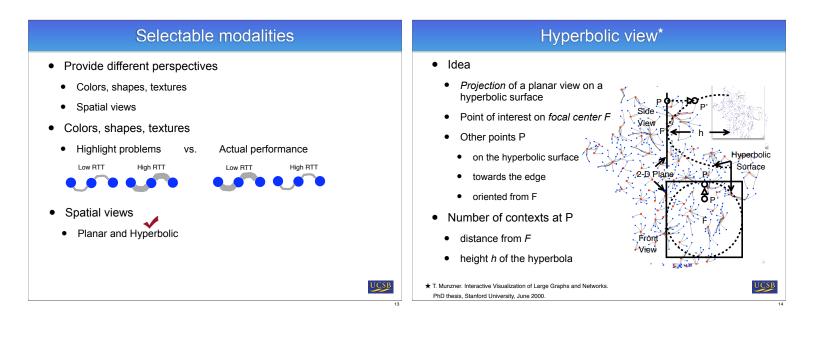
- Google WiFi
 - 425 routers, 66 gateways
 - ~2000 clients per day
- Tailored data
 - ETX is proportional to distance
- Routes are shortest paths to closest gateways
- Random number of clients per node
- Route throughput and RTT is based on number of hops + some randomness

Visualization examples

-ND-138

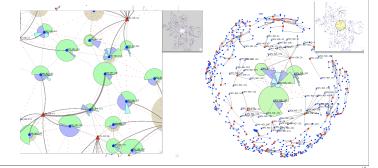

throughput = 1.3 delay = 20.42 hops = 2

-ND-152

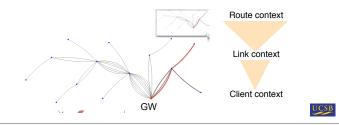

00:32:65:51:19:f6

37.16% utilization -20.0dB signal

- Route and link contexts
 - Routes are curved lines from routers to GWs
 - Links are straight lines between nodes
 - Metrics displayed on mouse-overs
- Client context
 - Circle sectors represent a client
 - Client metrics displayed on mouse-overs



<image>


Views trade-off

- Planar view
 - Preserves geographic location and orientation of nodes
- Hyperbolic view
- · Preserves global view and automatically adjusts contexts

SCUBA on the UCSB MeshNet

- UCSB MeshNet
 - 15 nodes (14 repeaters and 1 gateway) on three floors
 - Metrics from each node stored in a SQL database
 - SCUBA reads metrics from the database
- Problem diagnosis
- Artificial problem client introduced

Conclusions

- · As networks grow larger, diagnosis becomes harder
 - Good visualization tools are important
 - Research on key metrics and visualization is necessary
- Scuba is a diagnostic framework
 - Metrics organization and interaction with visuals
 - Eases diagnosis
- Future of large-scale complex metro networks
- Auto-diagnostic tools and protocols will become very useful
- Scuba is a means of diagnosis as well as planning

Future work

- Additional dimensions
 - Time to diagnose temporal problems such as flash-crowds
 - 3D Scuba to use the height as another information descriptor
- SCUBA and the collection of metrics
 - Focus-and-context used to control when/which metrics are collected
- Qualitative study of SCUBA usability
 - How useful is SCUBA in a variety of scenarios?
- Auto-focus on problems
 - Use of thresholds and temporal changes to self-identify problems

UCSB

Quantitative study for speed and accuracy of diagnosis

Questions?

UCSB

- SCUBA: Focus and Context for Mesh Health Diagnosis
 - Contact: amitj@cs.ucsb.edu or mock@cs.ucsb.edu
- Video demo of SCUBA on
 - http://moment.cs.ucsb.edu/conan/scuba
- 3D version of SCUBA and code
 - http://cs.ucsb.edu/~mock/netvisual/for290i/