Packet Sampling for Flow Accounting: Challenges and Limitations

Tanja Zseby (Fraunhofer FOKUS) Thomas Hirsch (Fraunhofer FOKUS) Benoit Claise (Cisco Systems)

April 29, 2008

Fraunhofer Institute for Open Communication Systems CISCO SYSTEMS

This work was funded by Cisco Systems as part of the VEGAS project.

Outline

- Problem statement
- Packet selection techniques
- Accuracy assessment in theory
- Accuracy assessment in practice
- Experimental results
- Standardization (IPFIX/PSAMP)
- Conclusion

Usage-based Accounting

- Accounting based on flow volume (transferred bytes)
- Requires flow measurements
 - all packets from network A
 - all packets with DSCP=x
 - all VoIP packets

Flow Measurements

© 2008 FhG FOKUS

Problem: Resource Consumption

- Resource Limitations
 - Processing power
 - Transmission
 - Storage
- Demand depends on
 - Data rates
 - Required granularity
- Solutions
 - Dedicated Hardware
 - Improved Algorithms
 - Data Selection

*source: NetFlow Performance Analysis, Cisco white paper

© 2008 FhG FOKUS

Packet Selection

Packet Selection Techniques (Examples)

Random n-out-of-N:

MI with N elements n-of-N selected N=15, n=3

Systematic:

MI with N elements every Kth selected N=15, K=5, n=N/K=3

Random 1-in-K:

L subintervals with K elements L x 1-of-K selected N=15, K=5, L=N/K=3, n=L=3

© 2008 FhG FOKUS

Problem: Accuracy Assessment

Accuracy Assessment required

- Achievable accuracy depends on
 - Sampling and estimation method
 - Sampling parameters
- Accuracy assessment **during** measurement
 - For each measurement interval
 - For each flow
 - Based on sampled data

Theoretical Model

Accuracy Assessment in Practice

- Flow characteristics unknown
 - Estimation from sampled data
- Storing per-packet information too costly
 - Storing aggregates
- NetFlow Records
 - Number of packets stored
 - Sum of packet sizes stored
 - Calculation/estimation of mean packet size possible
 - **BUT:** calculation/estimation of packet size variance not possible

NetFlow Records:
$$N_f$$
, $\sum X_f$, $\sum X_f^2$

Store sum of squares !

1-in-K Sampling (Cisco)

- 1-in-K: Count-based **stratification** with **equal allocation**
 - Packet selection limited to 1 packet per subinterval
 - Theoretical Model → see paper
- Stratification gain
 - Depends on variance of packet sizes from flow f in strata
 - 1 packet per sub-interval selected

→ not sufficient to estimate variance in sub-interval <u>n-out-of-N:</u>

Experiments

- Setup
 - Traces from three different networks
 - Different sampling schemes
 - Different classification schemes
 - Different measurement interval lengths
 - Sampling before and after classification
- Accuracy Calculation
 - based on theoretical model
 - using real flow characteristics

Flow Characterstics

© 2008 FhG FOKUS

Conformant Flows

Sampling fraction: 5%, StdErr ≤0.05

Sampling after classification

Sampling *before* classification

Sampling Experiments

- 1000 sampling runs per experiment
- Different sampling rates
- Calculation of bias and standard error
- Comparison of schemes
 - n-out-of-N
 - 1-in-K
 - systematic

Conformant Flows

Trace: NZIX MI: 1M Classification S24D00 Sampling fraction =5%

Max rel. StdErr	Error/CL	n-of-N	1-in-K	Systematic
0.003876	0.01/99%	0	0	0
0.005102	0.01/95%	0	0	0
0.019380	0.05/99%	64	64	62
0.025510	0.05/95%	72	72	83
0.051020	0.1/95%	473	475	567
0.076531	0.15/95%	1406	1425	1580
0.102041	0.2/95%	2316	2568	2860
0.1531	0.3/95%	5146	5397	5799
>0.1531	_	79383	79383	79383

© 2008 FhG FOKUS

Results

- Comparison of schemes
 - n-out-of-N close to n-out-of-N model
 - 1-in-K close to n-out-of-N model
 - Systematic sampling
 - Better results for some flows
 - But unpredictable (high variance of results)
 - Differs from model
- Higher accuracy achievable with
 - Larger sample fraction
 - Longer observation periods (if flow characteristics remain)
 - Coarse grained classification
 - Aggregation of flows

IPFIX/PSAMP IEs

- IP Flow Information Export (IPFIX)
 - Standard for flow information export (RFC5101)
 - Information elements (RFC5102)
- Packet Sampling (PSAMP)
 - Packet selection techniques (filtering, sampling)
 - Packet export using IPFIX

Parameter	IPFIX/PSAMP IEs	
Number N of packets in measurement interval	samplingPopulation	
Number <i>n</i> of packets in sample	samplingSize	
Number of packets from flow <i>f</i> in sample	packetTotalCount	
Sum (bytes in sampled packets)	octetTotalCount	
Sum of squares (bytes in sampled packets)	octetTotalSumOfSquares	

Conclusion

- Accuracy Assessment in theory and practice
 - n-out-of-N (before/after classification) → store sum of squares
 - 1-in-K \rightarrow not possible in practice (although model exists)
- Experiments
 - Small flows → poor accuracy for sampling before classification
 - 1-in-K close to n-out-of-N
 - Accuracy depends on settings (obs. period, classification)
 - Alternative: Flow selection based on expected accuracy
- IPFIX provides required information elements
- Work in progress:
 - Sampling for other metrics (e.g. for anomaly detection)
 - Hash-based selection

Thank you!

tanja.zseby@fokus.fraunhofer.de

FOKUS Open Source IPFIX Library: http://net.fokus.fraunhofer.de/libipfix/

Measurement data always welcome at:

http://www.ist-mome.org/

Fraunhofer Institute for Open Communication Systems